Influence Spread in Large-Scale Social Networks - A Belief Propagation Approach
نویسندگان
چکیده
Influence maximization is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under a certain diffusion model. The Greedy algorithm for influence maximization first proposed by Kempe, later improved by Leskovec suffers from two sources of computational deficiency: 1) the need to evaluate many candidate nodes before selecting a new seed in each round, and 2) the calculation of the influence spread of any seed set relies on Monte-Carlo simulations. In this work, we tackle both problems by devising efficient algorithms to compute influence spread and determine the best candidate for seed selection. The fundamental insight behind the proposed algorithms is the linkage between influence spread determination and belief propagation on a directed acyclic graph (DAG). Experiments using real-world social network graphs with scales ranging from thousands to millions of edges demonstrate the superior performance of the proposed algorithms with moderate computation costs.
منابع مشابه
Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملCommunity Aware Influence Maximization on Large Scale Networks Using Mapreduce
Influence maximization problem is a well known problem to find the top-k seed users who can maximize the spread of information in a social network. The primary concern is monte carlo simulations method is suffering with scalability issues while the selection of seed users .It takes days to find potential seed users in large datasets. In this paper, we propose a highly scalable algorithm for ide...
متن کاملA computational model and convergence theorem for rumor dissemination in social networks
The spread of rumors, which are known as unverified statements of uncertain origin, may threaten the society and it's controlling, is important for national security councils of countries. If it would be possible to identify factors affecting spreading a rumor (such as agents’ desires, trust network, etc.) then, this could be used to slow down or stop its spreading. Therefore, a computational m...
متن کاملFast Influence Maximization in Dynamic Graphs: A Local Updating Approach
We propose a generalized framework for influence maximization in large-scale, time evolving networks. Many real-life influence graphs such as social networks, telephone networks, and IP traffic data exhibit dynamic characteristics, e.g., the underlying structure and communication patterns evolve with time. Correspondingly, we develop a dynamic framework for the influence maximization problem, w...
متن کاملSecurity Games on Social Networks
Many real-world problems exhibit competitive situations in which a defender (a defending agent, agency, or organization) has to address misinformation spread by its adversary, e.g., health organizations cope with vaccination-related misinformation provided by anti-vaccination groups. The rise of social networks has allowed misinformation to be easily and quickly diffused to a large community. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012